Projective wonderful models for toric arrangements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wonderful Models of Subspace Arrangements

0 Introduction In this paper we describe, for any given nite family of sub-spaces of a vector space or for linear subspaces in aane or projective space, a smooth model, proper over the given space, in which the complement of these subspaces is unchanged but the family of subspaces is replaced by a divisor with normal crossings. This model can be described explicitly in a combinatorial way and a...

متن کامل

Wonderful Compactifications of Arrangements of Subvarieties

We define the wonderful compactification of an arrangement of subvarieties. Given a complex nonsingular algebraic variety Y and certain collection G of subvarieties of Y , the wonderful compactification YG can be constructed by a sequence of blow-ups of Y along the subvarieties of the arrangement. This generalizes the Fulton-MacPherson configuration spaces and the wonderful models given by De C...

متن کامل

Affine and toric arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un ...

متن کامل

A Tutte Polynomial for Toric Arrangements

We introduce a multiplicity Tutte polynomial M(x, y), with applications to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recursion and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials fo...

متن کامل

Affine and Toric Hyperplane Arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2018

ISSN: 0001-8708

DOI: 10.1016/j.aim.2017.06.019